F features) are in the upper triangular part of Table 3. The hierarchical tree on the basis of the statistics is displayed in Figure 7 (B), but the rows and columns of the upper triangular part of Table 3 are also sorted according to the tree in Figure 7 (A) for KDM5A-IN-1 site consistency with the lower triangular part. The comparison using image features indicates that 44 out of 55 show statistically significant differences (of which 27 were comparisons involving HeLa, A-431 and U-2OS). However, when the estimated model parameters were compared (in the lower triangular part of Table 3 and Figure 7 (A)), 31 out of 55 comparisons showed statisticalsignificance. Of these, 24 were comparisons involving HeLa, A431 and U-2OS cells. Thus when these cells are subtracted (since they are clearly different from the rest of the cell lines), the number of presumed differences dropped from 31 to only 7. We believe that this is an indication of the utility of the method: the full set of features reflects a variety of differences among the cell lines in a range of possible (latent) parameters not necessarily directly relevant to microtubule distributions (such as cell size and shape and nuclear size and shape). The model parameter estimation is, on the other hand, able to ignore these, and focuses on microtubules. In that case, eight of the cell lines appear to be fairly similar. Consideration of all of Table 3, Figure 7 (A) and Figure 6 suggests that HeLa, A-431 and U-2OS are very different from those eight but A-431 and U-2OS are close to each other in the estimated model parameter space. The differences among the three groups can largely be accounted for by differences in total polymerized tubulin from Figure 6. Similarly, among the group of eight, we can observe that RT-4 appears to have fewer, longer microtubules, Hep-G2 appears to have lower total tubulin, and Hek-293 appears to have shorter microtubules.Correlation between the estimated UKI-1 amount of polymerized tubulin and total tubulin fluorescence. Wecompared the amount of polymerized tubulin, estimated as the product of the number and mean length of the microtubules, to the total intensity of each cell image. The plot of these two quantities for real cells from eleven cell lines is shown in Figure 8. The high correlations demonstrate the consistency between the estimated 23727046 and real amount of polymerized tubulin and the effectiveness of our methods.DiscussionWe have developed an automated method to estimate 3D microtubule model parameters from 2D confocal immunofluorescence microscopy images in an indirect manner. The method is dependent on the 3D structure of the cell and the nucleus, and the centrosome location. We describe an automated approach in the method to generate an approximate 3D cell and nuclear morphology using only the 2D microtubule image and 2D nucleus image acquired at the center (half height) of the cell. We applied this method to generate distributions of microtubules in cells and utilized an indirect feature matching algorithm to estimate model parameters from 821 images of cells and 11 cell lines. Then the two quantitative parameters, number of microtubules and mean length of microtubules, were compared across cell lines. These two parameters are important because they demonstrate the fundamental physical characteristics of microtubules in cells. To our knowledge, this study is the first attempt to quantify the number and mean of the length distribution of microtubules inFigure 4. Examples f.F features) are in the upper triangular part of Table 3. The hierarchical tree on the basis of the statistics is displayed in Figure 7 (B), but the rows and columns of the upper triangular part of Table 3 are also sorted according to the tree in Figure 7 (A) for consistency with the lower triangular part. The comparison using image features indicates that 44 out of 55 show statistically significant differences (of which 27 were comparisons involving HeLa, A-431 and U-2OS). However, when the estimated model parameters were compared (in the lower triangular part of Table 3 and Figure 7 (A)), 31 out of 55 comparisons showed statisticalsignificance. Of these, 24 were comparisons involving HeLa, A431 and U-2OS cells. Thus when these cells are subtracted (since they are clearly different from the rest of the cell lines), the number of presumed differences dropped from 31 to only 7. We believe that this is an indication of the utility of the method: the full set of features reflects a variety of differences among the cell lines in a range of possible (latent) parameters not necessarily directly relevant to microtubule distributions (such as cell size and shape and nuclear size and shape). The model parameter estimation is, on the other hand, able to ignore these, and focuses on microtubules. In that case, eight of the cell lines appear to be fairly similar. Consideration of all of Table 3, Figure 7 (A) and Figure 6 suggests that HeLa, A-431 and U-2OS are very different from those eight but A-431 and U-2OS are close to each other in the estimated model parameter space. The differences among the three groups can largely be accounted for by differences in total polymerized tubulin from Figure 6. Similarly, among the group of eight, we can observe that RT-4 appears to have fewer, longer microtubules, Hep-G2 appears to have lower total tubulin, and Hek-293 appears to have shorter microtubules.Correlation between the estimated amount of polymerized tubulin and total tubulin fluorescence. Wecompared the amount of polymerized tubulin, estimated as the product of the number and mean length of the microtubules, to the total intensity of each cell image. The plot of these two quantities for real cells from eleven cell lines is shown in Figure 8. The high correlations demonstrate the consistency between the estimated 23727046 and real amount of polymerized tubulin and the effectiveness of our methods.DiscussionWe have developed an automated method to estimate 3D microtubule model parameters from 2D confocal immunofluorescence microscopy images in an indirect manner. The method is dependent on the 3D structure of the cell and the nucleus, and the centrosome location. We describe an automated approach in the method to generate an approximate 3D cell and nuclear morphology using only the 2D microtubule image and 2D nucleus image acquired at the center (half height) of the cell. We applied this method to generate distributions of microtubules in cells and utilized an indirect feature matching algorithm to estimate model parameters from 821 images of cells and 11 cell lines. Then the two quantitative parameters, number of microtubules and mean length of microtubules, were compared across cell lines. These two parameters are important because they demonstrate the fundamental physical characteristics of microtubules in cells. To our knowledge, this study is the first attempt to quantify the number and mean of the length distribution of microtubules inFigure 4. Examples f.